If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2+121x-1432=0
a = 121; b = 121; c = -1432;
Δ = b2-4ac
Δ = 1212-4·121·(-1432)
Δ = 707729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{707729}=\sqrt{121*5849}=\sqrt{121}*\sqrt{5849}=11\sqrt{5849}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(121)-11\sqrt{5849}}{2*121}=\frac{-121-11\sqrt{5849}}{242} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(121)+11\sqrt{5849}}{2*121}=\frac{-121+11\sqrt{5849}}{242} $
| Y=110x+4 | | Y=11x+91 | | 2-3z+12=0 | | 5m-3=3m+3 | | 2a-20=20 | | 2(2x-1)=2(2x+29 | | -5m+4=1-2m | | 3(x+2)=37-x | | 3x-7=13+3x | | x2+16x-1=0 | | 1-3x=9-2x | | y×-1=0 | | -1=y/1 | | 4x/5+2=6 | | 48=y*8 | | 15x^2-75x+90=0 | | 2(m-3)=50 | | x^2-8x-2560=0 | | x^2-8x+2560=0 | | 40y,y=5 | | y^2-3y=8 | | 6x²-28x+16=0 | | 4x+8=(x-15) | | 500+20x=900 | | 6x+191=15x-7 | | 2x^2=12.5 | | 0,2x+3,4=0,6x-2,6 | | 180-y+2y=240 | | 6x-5=14x-47 | | 9j−7j=18 | | 3x-9=x=3 | | (10x+50)/70=35/70 |